Verification

Lecture?7

Martin Zimmermann

COlm UNIVERSITAT
"H"IHIIMI DES
JI SAARLANDES

Plan for today

» Linear-time properties
» Safety
» Liveness
» Fairness
» Regular Properties
> Finite automata
» Checking regular safety properties

Summary LT properties

» LT properties are sets of infinite words over 247 (= traces)

» Aninvariant requires a condition @ to hold in any reachable
state
» Each trace refuting a safety property has a finite prefix causing
this
» invariants are safety properties with bad prefix ®*(-®)
= safety properties constrain finite behaviors
» A liveness property does not rule out finite behaviour
= liveness properties constrain infinite behaviors
» Any LT property is equivalent to a conjunction of a safety and a
liveness property

Fairness

Does this program terminate?

Inc ||| Reset
where
procinc = while(x>0dox:=x+1)od
procReset = x:=-1

x is a shared integer variable that initially has value 0

Do we starve?

reqz
requ
(w1, na2,y=1)
reqx

wa,y=1

rel

(a1, w2,y=0)

Process two starves

(wi, nz,y=1) (m, wz,y=1)

process two finitely many times in critical section remains unfair

Process one starves

R

Fairness

» Starvation freedom is often considered under process fairness
= there is a fair scheduling of the execution of processes
» Fairness is typically needed to prove liveness

» not for safety properties!
» to prove some form of progress, progress needs to be possible

» Fairness is concerned with a fair resolution of nondeterminism
» such that it is not biased to consistently ignore a possible
option
Problem: liveness properties constrain infinite behaviours
» but some traces—that are unfair—refute the liveness property

v

Fairness constraints

» What is wrong with our examples?

» interleaving: not realistic as in reality no processor is infinitely
faster than another

» Rule out “unrealistic” runs by imposing fairness constraints
» what to rule out? = different kinds of fairness constraints
» “A process gets its turn infinitely often”

» always unconditional fairness
» if it is enabled infinitely often strong fairness

» if it is continuously enabled from some point on weak fairness

Fairness

This program terminates under unconditional fairness:

procinc = while(x>0dox:=x+1)od

proc Reset X = -1

x is a shared integer variable that initially has value 0

Fairness constraints

» Unconditional fairness
an activity is executed infinitely often

» Strong fairness
if an activity is infinitely often enabled (not necessarily always!)
then it has to be executed infinitely often

» Weak fairness
if an activity is continuously enabled (no temporary disabling!)
then it has to be executed infinitely often

we will use actions to distinguish fair and unfair behaviours

Fairness definition

For TS = (S, Act, —, 1, AP, L) without terminal states, A € Act,

and infinite execution fragment p = 5o %51 % ... of TS:

1. pis unconditionally A-fair whenever:
true = Vk>0.3j>k a;cA

infinitely often A is taken

2. pisstrongly A-fair whenever:

(Vk>0.3j> k. Act(s)) NnA+20) —

infinitely often A is enabled

3. pis weakly A-fair whenever:

(Fk>0.Vj> k. Act(sj)) nA+ o) —

A is eventually always enabled

(Vk>0.3j>k ajeA)

infinitely often A is taken

(Yk>0.3j>k. ajcA)

infinitely often A is taken

where Act(s) = {aeAct|3s €S.s%5"}

Which fairness notion to use?

» Fairness constraints aim to rule out “unreasonable” runs

» Toostrong? = relevant computations ruled out
verification yields:
» “false”: error found

u

> ": don't know as some relevant execution may refute it

» Tooweak? = too many computations considered
verification yields:
» “true” property holds
» “false”: don't know, as refutation maybe due to some
unreasonable run

Relation between fairness constraints

unconditional A-fairness = strong A-fairness —> weak A-fairness

Fairness assumptions

» Fairness constraints impose a requirementonany a € A

» In practice: different constraints on different action sets
needed

» This is realised by fairness assumptions

Fairness assumptions

» Afairness assumption for Act is a triple

F = (fucond’fstrongy}—weak)

with fucond) f;trongy fweak < ZACt-
» Execution p is F-fair if:

» itis unconditionally A-fair for all A € F,ong, and
» itis strongly A-fair for all A € Fiyrong, and
» it is weakly A-fair for all A € Feqx

fairness assumption (@, F', @) denotes strong fairness; (@, @, F') weak,
etc.

Fairness for mutual exclusion

(m, n2,y=1)

(w1, y=1)

{c1,n2,y=0) {m,c2,y=0)

F = (2,{{ enten,enter, } }, @)

Fsrrong

Fairness for mutual exclusion

(w1, nz,y=1)

{m,c2,y=0)

F=(2, {{ enten }, { enter, }}, 2)

fstrong

Fairness for mutual exclusion

(Wi, na,y=1)

{c1,n2,y=0)

F' = (Q, {{enter, }, { enter, }},{{req, },{ req, }})

Fstrong -7:weak

in any F'-fair execution each process infinitely often requests access

Fair paths and traces

» Pathsg—s;—s,...is F-fairif
» there exists an F-fair execution so > 51 25
» FairPaths = (s) denotes the set of F-fair paths that startin s
» FairPaths z(TS) = U FairPaths £(s)
» Trace o is F-fair if there exists an F-fair execution p with
trace(p) = o
» FairTraces z(s) = trace(FairPaths (s))
» FairTraces z(TS) = trace(FairPaths (TS))

these notions are only defined for infinite paths and traces; why?

Fair satisfaction

» TS satisfies LT-property P:

TSeP ifandonlyif Traces(TS) c P

» TS satisfies the LT property P if all its observable behaviors are
admissible

» TS fairly satisfies LT-property P wrt. fairness assumption F:

TSex P ifandonlyif FairTracesz(TS) c P

» if all paths in TS are F-fair, then TS = Pif and only if TS = P
» if some path in TS is not F-fair, then possibly TS = P but TS i P

Fairness for mutual exclusion

req:
wi, Wy, y=1)

(mmrn)
P

(a1, wz,y=0) (w1, ¢2,y=0)

(m, c2,y=0)

TS i “every process enters its critical section infinitely often”

and TS i~ “every ... often”

but TS £/ “every ... often”

Fair concurrency with synchronization

» TS; = (Si, Actj, =, I;, AP, L), for 1 < i < n, has no terminal states

» TS; and TS; (i#)) synchronize on their common actions:

State space of TS| ... ||TS, is the Cartesian product of those of TS;

» foraeActi\ (U Syn,.,j) and0<i<n:
0<j<n

i#f

o !
Si —iS;

!
(S15 s Sir-vesSn) = (S15.. s Si5 ... Sn)
» foraeSyn;;and 0 <i<j<n:

o ! o
Si—>iSi N S —>jS;

(1505 Sisee s SjpeerSn) == (Styee s Spren

Asynchronous concurrent systems

concurrency = interleaving (i.e., nondeterminism) + fairness

Some fairness assumptions

» Strong fairess constraint: {Act;, Acty, ..., Act }

» TS; executes an action (not necessarily a sync!) infinitely often
provided TS is infinitely often in a (global) state with a transition
of TS; enabled

» Strong fairness constraint: { {a } | a € Syn;;,0<i<j< n}
» every individual synchronization is forced to happen infinitely
often
» Strong fairness constraint: {Synu |0<i<j< n}
» every pair of processes is forced to synchronize infinitely often
» Strong fairness constraint: { Uo<icj<n Syn;; }

» asynchronization (possibly the same) takes place infinitely
often

Realizable fairness

For TS with set of actions Act and fairness assumption F for Act:
Fis realizable for TS if for any s € Reach(TS): FairPaths z(s) + @

every initial finite execution fragment of TS can be completed to a fair execution

Realizable fairness and safety

For TS and safety property P4z (both over AP)

and F arealizable fairness assumption for TS:

TS E Pyre ifandonlyif TS Ex Psgfe

Summary of fairness

» Fairness constraints rule out unrealistic traces
» i.e,, constraints on the actions that occur along infinite
executions
» important for the verification of liveness properties
» Unconditional, strong, and weak fairness constraints
» unconditional = strongfair = weak fair

» Fairness assumptions allow distinct constraints on distinct
action sets

v

(Realizable) fairness assumptions are irrelevant for safety
properties

Regular properties

Finite automata
A nondeterministic finite automaton (NFA) A is a tuple (Q, £, 8, Qo, F)
where:

» Qis a finite set of states

» X is analphabet

» §:Qx 2 - 2%is a transition function
» Qo € Qa set of initial states

» F cQisasetof accept (or: final) states

Size of an NFA

The size of A4, denoted |.A|, is the number of states and transitions in
A:

Al = 1Ql+ 2 > 18(a.A)]

qeQAex

Language of an automaton

v

NFA A=(Q,%,8,Q0,F)andword w = Ay... Ay e ¥
» Arunforwin Ais a finite sequence gg G; ... gn such that:
» go€Qo andq;ﬁtqu forall0<i<n
» Runqoqi ... gnisacceptingif g, € F
» we X is accepted by A if there exists an accepting run for w

v

The accepted language of A:

L(A) = {w € X* | there exists an accepting run for win A }

v

NFA A and A’ are equivalentif L(A) = L(A")

Accepted language revisited

Extend the transition function 8 to 6* : Q x * — 29 by:
6*(g.¢)={q} and §&"(q.A)=4(q,A)

0" (q,A1A2 .. .An) = Upeﬁ(q,A1) 6*(p,A2 .. .An)

0*(g, w) = set of states reachable from g for the word w

Then: £L(A) = {w e Z* | §*(qo,w) NF # @ for some go € Qo }

The class of languages accepted by NFA (over %)

= the class of regular languages (over %)

