Verification

Lecture 8

Martin Zimmermann

COlm UNIVERSITAT
"H"IHIIMI DES
JI SAARLANDES

Plan for today

» Regular properties
» Finite automata
» Checking regular safety properties
» Blichi automata

Regular properties

Review: Finite automata
A nondeterministic finite automaton (NFA) A is a tuple (Q, £, 8, Qo, F)
where:

» Qis a finite set of states

» X is analphabet

» §:Qx 2 - 2%is a transition function
» Qo € Qa set of initial states

» F cQisasetof accept (or: final) states

Review: Accepted language revisited

Extend the transition function 8 to 6* : Q x * — 29 by:
6*(g.¢)={q} and §&"(q.A)=4(q,A)

0" (q,A1A2 .. .An) = Upeﬁ(q,A1) 6*(p,A2 .. .An)

0*(g, w) = set of states reachable from g for the word w

Then: £L(A) = {w e Z* | §*(qo,w) NF # @ for some go € Qo }

The class of languages accepted by NFA (over %)

= the class of regular languages (over %)

Intersection

» Let NFA .A,‘ = (Q,‘, Z, 6,', Qo,,', F,'), with i=1,2
» The product automaton

A1©A; = (Q1xQy,Z,8,Q01 x Qoo Fr x F)
where § is defined by:
d A B A G A, a5
(a1, 92) S (a1.92)
» Well-known result: £L(A10.A4;) = L(A)nL(Ay)

Total NFA

Automaton A is called deterministic if

|Qol<1 and |6(g,A)|<1 forallgeQandAeX

DFA A is called total if

|Q|=1 and |§(q,A)|=1 forallgeQandAeX

any DFA can be turned into an equivalent total DFA

total DFA provide unique successor states, and thus, unique runs for each

input word

Determinization

For NFA A = (Q, 2,8, Qo, F) let Aget = (22, Z, 8ger> Qo» Faer) With:
Faee={Q'cQ|Q nF#a}
and the total transition function 8y : 29 x 3 — 29 is defined by:

d4et(Q",A) = U 9(q,A)
qeQ’

Aget is a total DFA and, for all w € X*: 6,(Qo, W) = Ug,eq, 6 (qo, W)
Thus: L(Ager) = L(A)

Determinization

{90,902} 2 {90,a1,92} B

a deterministic finite automaton accepting L((A + B)*B(A + B))

Facts about finite automata

» They are as expressive as regular languages
They are closed under n and complementation
» NFA A ® B (= cross product) accepts L(A) n L(B)
» Total DFA A (= swap all accept and normal states) accepts
L(A) ="\ L(A)
They are closed under determinization (= removal of choice)
» although at an exponential cost.....
L(A) = @? = check for reachable accept state in A
» this can be done using a simple depth-first search

v

v

v

» For regular language L there is a unique minimal DFA
accepting £

Peterson’s banking system

Person Left behaves as follows:

while true {

rq: b1, x = true, 2;
wait until(x ==1]| - b,) {
cs: ... @account; ...}
by = false;
}

Person Right behaves as follows:

rq:

cs:

while true {
ba, x = true, 1,
wait until(x == 2|| - b) {
... @accountg...}
b, = false;

Is the banking system safe?

x==1 x==2

X==2

Can we guarantee that only one person at a time has access to the bank
account?

“always - (@account, A @accountg)”

Is the banking system safe?

» Safe = at most one person may have access to the account
» Unsafe: two have access to the account simultaneously

» unsafe behaviour can be characterized by bad prefix
» alternatively (in this case) by the finite automaton:

=(®@account,

A@accounty) ﬂ
Q@account; A Qaccounty

—

Regular safety properties

Safety property Psq Over AP is regular

if its set of bad prefixes is a regular language over 247

every invariant is regular

Problem statement

Let

» Pg.f be aregular safety property over AP
» A an NFA recognizing the bad prefixes of Py,

» assume that e ¢ L(A)
= otherwise all finite words over 247 are bad prefixes

» TS a finite transition system (over AP) without terminal states

How to establish whether TS & Pyyf?

Basic idea of the algorithm

TSE Py ifandonlyif Tracess,(TS) n BadPref(Psafe) = @
if and only if Tracess,(TS) N L(A) =@

ifand only if TS® A £ “always” @ to be proven

But...... this amounts to invariant checkingon TS ® A

= checking regular safety properties can be done by depth-first search!

Synchronous product (revisited)

For transition system TS = (S, Act, -, I, AP, L) without terminal states
and A = (Q, %, 8,Qq,F) an NFA with X = 227 and Qy N F = @, let:

TS® A = (§,Act,—",I',AP', L") where

=Sx QAP =Qandl'({s,q)) = {q}
g g L0,
(s,q) % <t’P>

g I,={<50:q> | so€l A 3gg € Q. go—>> L(SO) q}

» —'is the smallest relation defined by

without loss of generality it may be assumed that TS ® A has no terminal states

Example product

—red A —yellow

red/yellow

—yellow

(green, qo) (red/yellow, qo)

(yellow, q1) (red, qo)

Verification of regular safety properties

Let TS over AP and NFA A with alphabet 24° as before, regular safety
property Ps4f over AP such that L(\A) is the set of bad prefixes of

P safe-

The following statements are equivalent:
@ TS & Psafe
(b) Tracess,(TS) N L(A) = @
@ TS® A & Pipy(n)

where Pinv(A) = /\GEF -q

Counterexamples

For each initial path fragment (so, q1) . .. (sp, gn+1) of TS® A:
Gi,.--qGn ¢ Fand g1 € F = trace(sosi...sp) € L(A)

—
bad prefix for P4

Verification algorithm

Require: finite transition system TS and regular safety property Ps,f.
Ensure: true if TS E Py4.. Otherwise false plus a counterexample for Pyuf.

Let NFA A (with accept states F) be such that £(.A) = BadPref(Psafe);
Construct the product transition system TS ® A;
Check the invariant P;,, 4y with proposition —-F = Ager=gonTS® A

ifTSe AE Pinv(A) then
return true
else
Determine initial path fragment (so, g1} . .. (Sn, gn+1) of TS ® A with
Gnw1 €F
return (false,sps1...5p)
end if

Time complexity

The time and space complexity of checking a regular safety property Psqfe
against transition system TSis in:
O(|Ts] - |AJ)

where A is an NFA recognizing the bad prefixes of Pufe

Blichi Automata

Peterson’s banking system

Person Left behaves as follows:

while true {

rq: b1, x = true, 2;
wait until(x ==1]| - b,) {
cs: ...@account; ...}
by = false;
}

Person Right behaves as follows:

rq:

cs:

while true {
ba, x = true, 1,
wait until(x == 2|| - b) {
... @accountg...}
b, = false;

Is the banking system live?

x==1

x=2

X==2

X==2

b, =0

If someone wants to update the account, does (s)he ever get the opportunity to do so?

“always (req, = eventually @account,) A always (req, = eventually @accountg)”

w-regular expressions

1. @ and ¢ are regular expressions over ¥
2. if Ae Zthen Ais a regular expression over %

3. if E, E; and E; are regular expressions over X
then so are E; + Ey, E;.E; and E”

E* is an abbreviation for the regular expression E.E*

An w-regular expression G over the alphabet X has the form:

G=E.F{+...+E,.F, forn>0

where E;, F; are regular expressions over X such that ¢ ¢ L(F;), for all
0<i<n

Semantics of w-regular expressions

» The semantics of regular expression E is a language L(E) < £*:
L(2) =2, L(e)={e}, L(A)={A}

L(E+E") = L(E)uL(E") L(E.E')=L(E).L(E') L(E*)=L(E)"

» The semantics of w-regular expression G is a language
L(G) c ¢

Lo(G) = L(E).LF)® U...UL(Ey).L(Fp)®

where LY = {wowyw;--- | w; € L forall i} (for L € £*).

» Gy and G; are equivalent, denoted Gy = Gy, if £,(G1) = L4,(G3)

w-regular languages and properties

» L cX%is w-regularif £ = £,(G) for some w-regular expression
G (over %)
» w-regular languages possess several closure properties
» they are closed under union, intersection, and
complementation
» complementation is not treated here; we use a trick to avoid it
» LT property P over AP is called w-regular

if P is an w-regular language over the alphabet 24P

all invariants and reqular safety properties are w-regular!

Blchi automata

v

NFA (and DFA) are incapable of accepting infinite words
Automata on infinite words

» suited for accepting w-regular languages
» we consider nondeterministic Blichi automata (NBA)

» Accepting runs have to “check” the entire input word = are
infinite
= acceptance criteria for infinite runs are needed
NBA are like NFA, but have a distinct acceptance criterion
» one of the accept states must be visited infinitely often

v

v

Blchi automata

A nondeterministic Biichi automaton (NBA) A is a tuple (Q, £, §, Qo, F)
where:

» Qis a finite set of states with Qg € Q a set of initial states
» X is analphabet

» §:Qx 2 - 2%is a transition function

» F c Qisasetof accept (or: final) states

The size of A, denoted |A], is the number of states and transitions in A:

Al = 1Q1+ 2, > 13(a.A) |

qeQ Aex

Language of an NBA

v

NBA A= (Q,%,8,Qp,F) and word 0 = AjAAs ... € ¢

» Arunfor o in Ais an infinite sequence go g1 g> . . . such that:
» go € Qo and g; ﬁ*—‘»qm forallO<i

» Run goq1q> ... is accepting if g; € F for infinitely i

» 0 € X is accepted by A if there exists an accepting run for ¢

v

The accepted language of A:

L,(A) = {0 €| there exists an accepting run for g in A }

v

NBA A and A’ are equivalentif £,(A) = L,(A")

Deterministic BA

Blichi automaton A is called deterministic if
|Qo| <1 and |6(g,A)|<1 forallgeQandAcX
DBA A is called total if

Q=1 and |6(q,A)|=1 forallgeQandAeX

total DBA provide unique runs for each input word

