Synthesis from Hyperproperties

Bernd Finkbeiner, Christopher Hahn, Philip Lukert, Marvin Stenger, Leander Tentrup

We study the reactive synthesis problem for hyperproperties given as formulas of the temporal logic HyperLTL. Hyperproperties generalize trace properties, i.e., sets of traces, to sets of sets of traces. Typical examples are information-flow policies like noninterference, which stipulate that no sensitive data must leak into the public domain. Such properties cannot be expressed in standard linear or branching-time temporal logics like LTL, CTL, or CTL*. Furthermore, HyperLTL subsumes many classical extensions of the LTL realizability problem, including realizability under incomplete information, distributed synthesis, and fault-tolerant synthesis. We show that, while the synthesis problem is undecidable for full HyperLTL, it remains decidable for the exists*, exists*-forall-1, and the linear forall* fragments. Beyond these fragments, the synthesis problem immediately becomes undecidable. For universal HyperLTL, we present a semi-decision procedure that constructs implementations and counterexamples up to a given bound. We report encouraging experimental results obtained with a prototype implementation on example specifications with hyperproperties like symmetric responses, secrecy, and information flow.

Acta Informatica.

Copyright by Springer Verlag. The final publication is available at Springerlink.